
2019-10-04

1

ECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math.

Prof. Hiren Patel, Ph.D.

hiren.patel@uwaterloo.ca dwharder@uwaterloo.ca

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

Some rights reserved.

Code-development
strategies

2
Code-development strategies

Outline

• In this lesson, we will:

– Discuss how most novice programmers will tackle assignments

– Provide a logical and methodical approach

– A code skeleton allows you to focus on one function at a time

• Compile-time errors will be localized to the code you are authoring

3
Code-development strategies

Code development

• In the course assignments, you will be asked to implement a number
of functions, and later, structures and classes

• We have now looked at functions, conditional statements and
repetition statements

– We will now look at strategies for developing a code base

4
Code-development strategies

Code development

• Suppose you are asked in an assignment to implement the following
five functions that

1. implements an absolute-value function,

2. approximates the tangent function on the open interval ,

3. implements the greatest-common divisor algorithm,

4. implements the least-common multiple algorithm, and

5. asks the user for a name, e.g., “Bob” and then prints “Hi Bob!”.

together with a main() function that uses these functions

,
2 2

2019-10-04

2

5
Code-development strategies

Code development

• Many first-year students and novice programmers will do the
following:

– They will write all the code, try compiling and be left with a bewildering
number of error messages

– Problem: errors such as forgetting semi-colons or closing parentheses or
braces can often give messages that are far away from the actual issue

– Problem: for a novice programmer, seeing page after page of error
messages can be intimidating and unnecessarily frustrating

6
Code-development strategies

Code development

• Best approach is to write a skeleton, and make sure it compiles:

– List all of the function declarations

• If you are not given names for the functions, come up with names that are
appropriate and descriptive

– Create skeleton implementations of each of the functions that simply
return a default value

– Make sure the skeleton compiles

– Then start working on one function at a time, and

• Make sure the code still compiles, and

• Try to test the implementation in main() to ensure it works correctly

7
Code-development strategies

Code development

• You will now create your skeleton:
#include <iostream>

// Function declarations

int main();

double my_abs(double x);

double my_tan(double x);

int gcd(int m, int n);

int lcm(int m, int n);

void print_hi();

// Function definitions

int main() {

return 0;

}

You don’t have to, but it’s a good idea
to keep the function definitions in the
same order as the function declarations

8
Code-development strategies

Code development

• For each function, just have the definition return the default value
double my_abs(double x) {

return 0.0;

}

double my_tan(double x) {

return 0.0;

}

int gcd(int m, int n) {

return 0;

}

int lcm(int m, int n) {

return 0;

}

// Nothing to return here--at the end of the function body, it returns

void print_hi() {

}

2019-10-04

3

9
Code-development strategies

Code development

• This code should compile, even if it does nothing

– If there are compile-time errors, fix them first

• Next, implement the main() function just to test everything
// Function definitions

int main() {

std::cout << "gcd(15708, 23205) = 357: " << gcd(15708, 23205)

<< std::endl;

std::cout << "lcm(15708, 23205) = 1021020: " << lcm(15708, 23205)

<< std::endl;

std::cout << "|-3.2| = 3.2: " << my_abs(-3.2) << std::endl;

std::cout << "tan(0.01) = 0.0100003333: " << my_tan(0.01)

<< std::endl;

print_hi();

return 0;

}

10
Code-development strategies

Code development

• If you tried compiling and executing this, it would be nonsensical:
gcd(15708, 23205) = 357: 0

lcm(15708, 23205) = 1021020: 0

|-3.2| = 3.2: 0

tan(0.01) = 0.0100003333: 0

• However, it does compile!

11
Code-development strategies

Code development

• Next, implement one function at a time, and make sure it works

– Don’t start lcm until you get gcd working

– If you think that the absolute-value function is easier, start with it, but
make sure it works before you go onto the next

• Many students have an attitude combining thoughts like:

“This is too easy…”

“I won’t make any mistakes!”

“I want to get this #$@&%*! done and over with!!!”

“Compiling wastes my time…”

• And one in one hundred students will be right on all counts

– The rest, however, may ignore these suggestions and in the end, waste
more time than they would have had to…

12
Code-development strategies

Summary

• Following this lesson, you now:

– Understand that writing everything at once is likely going to result in
longer development time

– Know that starting by writing a skeleton is easy enough

– Understand that by writing one function at a time, you can

• First, focus on any compile-time errors your implementation has

• Next, ensure your implementation works correctly

• The course web site presents an example that prints the volume and
surface areas of the five Platonic solids:

https://ece.uwaterloo.ca/~ece150/Lecture_materials/1.10/

https://ece.uwaterloo.ca/~ece150/Lecture_materials/1.10/

2019-10-04

4

13
Code-development strategies

References

[1] Wikipedia

https://en.wikipedia.org/wiki/Skeleton_(computer_programming)

14
Code-development strategies

Acknowledgments

Proof read by Dr. Thomas McConkey and Charlie Liu.

15
Code-development strategies

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

16
Code-development strategies

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

https://en.wikipedia.org/wiki/Skeleton_(computer_programming)

